当前位置:首页 > 文献资料 > 正文

简述什么是马尔科夫链

马尔可夫链是概率论和数理统计中具有马尔可夫性质且存在于离散的指数集)和状态空间内的随机过程 。适用于连续指数集的马尔可夫链被称为马尔可夫过程,但有时也被视为马尔可夫链的子集,即连续时间马尔可夫链,与离散时间马尔可夫链相对应,因此马尔可夫链是一个较为宽泛的概念

简述什么是马尔科夫链

马尔可夫链可通过转移矩阵和转移图定义,除马尔可夫性外,马尔可夫链可能具有不可约性、常返性、周期性和遍历性。一个不可约和正常返的马尔可夫链是严格平稳的马尔可夫链,拥有唯一的平稳分布。遍历马尔可夫链(ergodic MC)的极限分布收敛于其平稳分布 。

马尔可夫链可被应用于蒙特卡罗 *** 中,形成马尔可夫链蒙特卡罗(Markov Chain Monte Carlo, MCMC) ,也被用于动力系统、化学反应、排队论、市场行为和信息检索的数学建模。此外作为结构最简单的马尔可夫模型(Markov model),一些机器学习算法,例如隐马尔可夫模型(Hidden Markov Model, HMM)、马尔可夫随机场(Markov Random Field, MRF)和马尔可夫决策过程(Markov decision process, MDP)以马尔可夫链为理论基础

马尔可夫链的命名来自俄国数学家安德雷·马尔可夫(Андрей Андреевич Марков)以纪念其首次提出马尔可夫链和对其收敛性质所做的研究