当前位置:首页 > 高考问答 > 正文

多分类logistic回归分析

Logistic回归分析(logit回归)一般可分为3类,分别是二元Logistic回归分析、多分类Logistic回归分析和有序Logistic回归分析。

多分类logistic回归分析

多分类logistic回归分析基本说明:

只要是logistic回归,都是研究X对于Y的影响,区别在于因变量Y上,logistic回归时,因变量Y是看成定类数据的,如果为二元(即选项只有2个),那么就是二元logistic回归; 如果Y是多个类别且类别之间无法进行对比程度或者大小,则为多分类logistic回归;如果Y是多个类别且类别之间可以对比程度大小(也称为定量数据,或者有序定类数据),此时则使用有序logistic回归。

多分类logistic回归的难点在于:因变量为类别数据,研究X对Y的影响时,如果为类别数据,那么不能说越如何越如何,比如不能说越满意越愿意购买;而只能说相对小米手机来说,对于手机外观越满意越愿意购买苹果手机。这就是类别数据的特点,一定是相对某某而言。这就导致了多分类logistic回归分析时,文字分析的难度加大,更好是使用SPSSAU的智能文字分析对应查看。

单独进行多分类logistic回归时,通常需要有以下步骤,分别是数据处理,模型似然比检验,参数估计分析和模型预测效果分析共4个步骤。